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in [I], Novozhilov and Kadashevich proposed a two-dimensional dynamical 

model which facilitates the description of behavior of an anisotropic 
strain-hardening material L2.31. The ideas of [II can be utilized for 
construction of a large class of models of continuous media. 

On the basis of an appropriate two-dimensional dynamical model, we 
shall consider the relations determining perfectly plastic flow of a 
material in which (according to the terminology of Novozhilov and 
Kadashevich) residual microstresses develop. 

1. For a group of materials, the relation between the shear stress T 

and the shear deformation y can be adequately described by a diagram 
shown in Fig. 1 (in the following, only rigid-plastic materials will be 

considered). It is essential that, in this case, 

the yield stress T = k, (point A in Fig. 1) and z- B c 
the flow stress T = tn (point B in Fig, 11 do not 
coincide. The segment AB (kl < T ( m) character- 
izes hardening of the material and, ‘in general, it 

A - - 

~ 

f 
is nonlinear, At 5 = m, a perfectly plastic flow % ln 
develops. 

0 
We shall consider the behavior of the material Fig. 1. 

in the perfectly plastic flow (segment BC in 
Fig. 11, In our case, not as in the usual formula- 
tion of the theory of rigid-perfectly-plastic solids t&, several 
different approaches to the construction of the theory are possible. 

If the hardening solid remains isotropic, the relations of the 
perfectly plastic flow have the usual form [4]. In the case of aniso- 
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tropic hardening, the characteristic properties of perfectly plastic 
flow are influenced by the arising residual microstresses. For simpli- 
city, we shall consider the case of an ideal Bauschinger effect. 

We shall consider first a one-dimensional model (Fig. 2af consisting 
of two elements with solid friction connected with a spring. Denoting by 
k, and k, the limiting frictional forces of the first and the second 
element, respectively, the relation between the traction T and the dis- 
placement q is given in Fig. 26. ‘Ihe nonlinearity on the segment AB can 
be obtained by assuming a nonlinear characteristic of the spring. lhe 
corresponding two-dimensional model is shown in Fig. 3. 

It is obvious that the behavior of the models is essentially influ- 
enced by the forces in the springs aal and bb, (Fig. 3). These forces 

correspond to microstresses in a continuous 
solid. The case in which the forces in the 
springs aal and bb, do not exceed the force 

“_, 
of solid friction in the element 2 has been 
considered in ill. In this paper, we shall 

Fig. 2. Fig. 3. Fig. 4. 

consider a perfectly plastic flow at which the forces in the springs aal 
and bb, are large enough to overcome the resistance of solid friction in 
the element 2. 

We denote by I; and T2 the external forces, and by s1 and s2, the 
forces in the springs aal and bb,. We assume that the forces Ti and .si 
are such that the elements 1 and 2 acquire increments of displacement. 
In Fig. 4, the initial position of the element 1 is represented by the 
point o and the subsequent position, by the point ol. ‘Ihe element 2 moves 
from the position acb into the position alblcl. The following conditions 
should be satisfied: 

(Fl -- i,y + (T, - s2)” = k,2 U.4 
s12 f - s22 )-= I,.,2 (1.2) 
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We denote now the displacement of the element 1 by ql, q2 and the dis- 
placement of the element 2 by rl, r2. From Fig. 4 we have of = Aql 
elf = Aq,, cd = Arl, c,d = At-,. 

The elastic constants of the springs aal and bb, will be denoted by 
l/c and, thus, 

A (qi - ri) = cds,, A (yz - r3) = cds, (1.3) 

The displacements of the elements 2 and 2 coincide with the directions 

of acting forces; therefore 

Ark 81 ---y- 
At-2 q 

(“1.4; 

The relations (1.1) - (1.4) all ow for investigation of the behavior of 

the system shown in Fig. 4. It is necessary to point out the qualitative 
character of these considerations and to warn against any far going 
analogies between the behavior of the dynamical model and the behavior 
of a continuous medium. We do not consider, for instance, rotations of 
the element 2, and related effects, as they are immaterial for the 
following discussion. 

Certain aspects of perfectly plastic flow can be conveniently illus- 

trated, in this case, with kinematical models [Sj. For an anisotropic 
hardening material with the ideal Bauschinger effect, a model can be 
used in the form of a circular frame moving in the 
plane under the action of the pivot A if there is 
no friction between the pivot and the frame (Fig. IA 

I 

5). ‘Ihe point 0 represents the initial center of 
the frame and the point O,, a subsequent center of _ 

~ 

__ _ ’ _o? _ _ _ 

the frame. The distance A0 corresponds to 
stresses, and the distance 00, corresponds to 

* ; 

deformations. 

In our case, the corresponding kinematical Fig. 5. 
model is the following. We take two circles which 
are concentric in the initial state. One of them 
is moving under the action of the pivot A. This 
same circle has in its center the pivot 0, acting upon the second circle. 
There is no friction between the pivots and the circles. The point 0 is 
the initial center of both circles (corresponding to the natural state), 
the point 0, is the center of the first circle, and the point 0, is the 
center of the second circle (Fig. 6). 

The distance AO, corresponds to stresses, 0102 corresponds to micro- 

stresses, and 00, corresponds to deformations. 
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We note that at a developed flow whose loading path a~~~o~~he~ a 

straight 1 ine t the points A, u,, 0, tend to occupy pcmitims aisa cm B 

straight line. 

2. Using dynamical analogies we interpret forces ZIEI stresses end dis- 

placements as deformations. 

The ~o~o~e~t~ of the stress tensor Qij 
satisfy the equations of e~~~~br~~ o-s. * = 0; 

V*l 
Ffg, 8, the ~~~~~~~ of the strain tensoT es” C8n be 

expressed in terms of the ~~o~e~t~ 0 ‘4 dis- 
FlacemenC Eli r liZ(U,, j ~ Uj, i)’ 

The behavior of the mterial in the case of microstresses s.. which 
are unable trt exceed the resistance of solid friction in the &respond- 
ing elements (the element 2 in Fig. 2af is described by the equations of 
the theory of anisotropic hardening and it has beea investigated ia the 
papers el-3j and others. Here, we shall consider the equations of the 
perfectly plastic flaw; the stresses vij and sjj being such that 
resistance af solid friction in both eleurlents 1s overcome. 

Cansides* now the expressions for the increments of the works 

~s~i~~ Ehat the expressions ~8, rend &A, are stationary at the re- 

spective conditions (2.11, we determine the flow rule considering the 
expressicms (2.1) as plastic potentials 

where dh, and ufh, are certain praportianality factors, 

Ve note that it would have been passible to start frcxn the ~~~~~~~~~ 
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for the work &A,, = (aij - s. .)de 
obtained unaltered, since a( i: j - 

The final relations would have been 
1 and, consequent 1 y , 

afl afl 

aq-= a !5ij - sij) 

Using the assumption concerning the nature of microstresses, tBe obtain 

Cz (eij’ - xii’) = CdSij 
(2.4) 

the tensor 
it is 

where c may be considered as a function of the invariants of 

‘ij and even the tensors aij, u . . - s . 
‘1 

necessary to add also the condition 
z j. Generally speaking, 

e-x=KKs (2.5) 

where e, K, s are the first invariants of the respective tensors, and 
the quantity K may be considered as a function of the invariants of the 
stress tensors. 

If the functions fl and f2 do not depend on the first invariants of 
the tensors ~ij - ~ij and sij respectively, then it follows fran (2.3) that 
eij = e..‘, ~~~ = K..‘, 

‘I =J 
e = K = 0. Since s # 0, then K = m. 

3. We shall consider now the case of plane strain. We assume that the 
flow conditions (2.1) do not depend on the third invariants of the 
deviators of stresses CT. and s . . . 

II ‘I 

Taking eZ = kZ = 0, we obtain the flow conditions 

[(u, - 5,) - (al, - S,)P + 4 (z, - sx# = 4kl” 

(s, - s$ + 4sx2v = 4k, 

The flow rule can be written in the form 

d% dxll d*xy -- _- 
s*-- sy Sy - % 2s w 

We rewrite the conditions (2.4) in the form 

d (e, - xx) = $d (% - %), d h - 3cv ) = 5 I+-- a 

d (exy-- xxy) = c&q, 

(3. $1 

(32) 

(3.3) 

(3.4) 

(3.5) 
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Considering, for simplicity, that c = const and assuming that in the 

initial state all the components of stress and strain are equal to zero, 
we obtain from (3.5) 

‘Ihe conditions (3.1) and (3.2) will be satisfied with 

0, = UI + k, cos 20 + s,, s, = s + k, eos 29 

CT, = 0 - k, cos 20 + sar, sy = s - k, cos 29 

z Xy = k, sin 28 + s,,, s, = k, sin 2J! 

(3.7) 

It follows from (3.7) 

a, = o + k, cos 28 + k, cos 2$, uy = u - k, cos 20 - k, cm 29 

z - krsin 28 + k, sin 212, W - (o=;(& $a,)=o+s) (3.8) 

The conditions (3.3) and (3.4) assume the form 

de, sin 2 0 - deXy cos 20 = 0, de, + de, = 0 (3.9) 

dx, ein 29 - dx, cos 29 = 0, dx, + d% = 0 (3.10) 

From (3.5) we obtain 

Eliminating the quantity dKii from (3.10) and (3.11), we find 

de, sin 29 - deXy cos 29 = - 2ck,d$ (3.12) 

In all the relations derived above, the expressions deii and dy deter- 
mine the increments of the corresponding canponents depending on a tima 
parameter. Dividing these expressions by dt, we can obtain the rates of 
the corresponding quantities. In the following, we shall use the Eulerian 
description. We denote by E ii the tensor of deformation-rate and by u and 
v the components of velocity along the axes n and y, respectively. We 
note that 

Substituting the Expressions (3.7) into the equations of equilibrium, 
we obtain 
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$ - 2kx sin 28 2 + 2kl cos 28 -$ - 21~: sin 29 ‘& + 2k, cm 29 ‘$ = 0 

G $2 k, cos 28 -$- + 2kl sin 2ea!& +2kz eos 29 ‘& $- 2k, sin 29 a% = 0 
(3.13) 

It is necessary to add also Equations (3.9) 

( au av --- 
ax ay ) sin 28 - ($+Z$)cos2e=o, g+o (3.14) 

and, finally, Equation (3.12) 

(3.15) 

We note that the system of five equations (3.13) - (3.15) contains 
five unknowns: u, 0, q~, u, u. Denoting by x(x, y, t) = 0 the equation of 
the characteristic surface, we obtain the characteristic determinant of 
this system of equations in the form 

g w cos 20 + B&XV sin 28 COS 28 - Xua CO9 20) = 0 (3.16) 

( 
ax ax 

xr=p xv=ay ) 

Consequently, the system (3.13) - (3.15) is always of the hyperbolic 

type. In the plane xy, we have the orthogonal characteristics 

dY ( 1 dz 1.2 
=-(ej--) (3.17) 

The relations (3.13) assume the following form along the character- 
istics 

~-2k~~-2k~[~~~os2(~-e)+~~i~2(~-6)]=0 
(3.18) 

e+2k,G+ 2k,[p sinZ(*--e)+‘$-c0s2(*--6)]=0 

where d< and dq denote arc elements along the characteristics. 

The relations (3.14) imply that along the characteristics the 

Geiringer relations are valid k4J 

W - Vde = 0, C% -+- Ud0 = 0 (3.19) 

where 0 and V denote the components of velocity along the characteristics. 
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We shall indicate a series of particular cases. If the yield point 
and the flow point coincide, k, = a (kz = 0), then (3.14) and (3.15) 
imply 8 = y, and in this case the usual relations of perfect plasticity 
are valid. 

For dy/dt = 0, Equation (3.15) again indicates that 8 = y, and from 
(3.8) we see that the usual relations of perfect plasticity are valid, 
with the yield stress m = k, + k,. It is interesting to note that 

&y/&t = 0 only for 8 = y, and if 8 # y then it is always dy/dt # 0. The 
quantity y, in general, tends to coincide with 8, and the closer y 
approaches 8 the smaller is dy/~t. This fact was illustrated previously 
by the use of the kinematical model. 

If the connections between the elements with solid friction are rigid, 
i.e. c = 0, then Equation (3.5) shows that e . . = K . . . From (3.14) and 
(3.15) we again obtain 8 = y and the basic re atioii ‘i reduce to those for 
perfectly plastic solids with the yield stress m = k, t k,. 

Finally, if k, = 0, then u.. = sij, 
‘A 

and the relations of an ideal 
elastic-plastic solid are vali . 

Let us note certain characteristic aspects of perfectly plastic flow 
in the presence of residual microstresses. hs in the case of non- 
existence of microstresses, characteristics form an orthogonal system, 
but the Hencky theorems 141 do not hold. The maximum shear stresses 7maX 
occur not along characteristics. The lines of discontinuity of velo- 
cities, according to (3.14), coincide with characteristics, as it is in 
the theory of perfect plasticity without microstresses. 

It is easy to formulate the basic boundary value problems of Goursat, 

of Cauchy, and the mixed one, and to outline numerical methods of solu- 
tion. I&t in this case, a state of deformation is reached through a 
region of hardening; therefore, ‘it is necessary to keep in sight the fact 
that the final solution depends on the history of loading. 

lhe author is grateful to V.V. Novozhilov for indicating the idea and 

for his attention. 
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